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Many systems are naturally modeled as Markov Decision Processes (MDPs), combining probabilities
and strategic actions. Given a model of a system as an MDP and some logical specification of system
behavior, the goal of synthesis is to find a policy that maximizes the probability of achieving this
behavior. A popular choice for defining behaviors is Linear Temporal Logic (LTL). Policy synthesis
on MDPs for properties specified in LTL has been well studied. LTL, however, is defined over infinite
traces, while many properties of interest are inherently finite. Linear Temporal Logic over finite traces
(LTL f ) has been used to express such properties, but no tools exist to solve policy synthesis for MDP
behaviors given finite-trace properties. We present two algorithms for solving this synthesis problem:
the first via reduction of LTL f to LTL and the second using native tools for LTL f . We compare
the scalability of these two approaches for synthesis and show that the native approach offers better
scalability compared to existing automaton generation tools for LTL.

1 Introduction

Many real-world systems are stochastic in nature. They evolve in the world according to action (control)
decisions and the uncertainty embedded in the execution of those actions, resulting in stochastic behavior.
Formal synthesis studies how the system should choose actions so that it can increase the chances of
achieving a desirable behavior. To allow such reasoning, Markov Decision Processes (MDPs) are typically
used to model these systems since MDPs effectively capture sequential decision-making and probabilistic
evolutions [5]. The desired behavior is expressed in a formal language, which yields expressive and
unambiguous specifications. Temporal logics are a common choice for this language since they allow a
combination of temporal and boolean reasoning over the behavior of the system. Most temporal logics are
interpreted over behaviors with infinite time durations, but some behaviors are inherently finite and can
be expressed more intuitively and more practically using a temporal logic with finite semantics [14, 13].
This work investigates policy synthesis on MDPs for specifications expressed in a formal language called
Linear Temporal Logic over finite traces (LTL f ) [9], which reasons over system behaviors with finite
horizons.

A popular specification language in formal verification is Linear Temporal Logic (LTL) [20]. LTL
provides a natural description of temporal properties over an infinite trace. LTL can express properties
such as order, e.g., “first a and next eventually b,” and lack of starvation, e.g., “globally eventually
resources are granted.” While infinite-trace properties are essential for reasoning about many systems,
other systems require finite-trace properties [14, 13], for example robot planning for finite behaviors. If a
robot is to build an object, the interest is in the finite rather than the infinite traces that accomplish this
task. In such cases LTL f [9] is a suitable alternative to LTL, cf. [13].
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A number of recent studies has focused on developing efficient frameworks for solving LTL f -
reasoning problems, e.g., [9, 10, 25, 14, 18, 13]. De Giacomo and Vardi [9] presented a translation of
LTL f to LTL, implying that existing tools for LTL satisfiability and synthesis can be used for LTL f with
suitable transformations. In [10], the problem of reactive synthesis from LTL f specifications that contain
system (controllable) and environment (uncontrollable) variables is considered. The work shows that this
problem reduces to strategy synthesis in a two-player automaton game, which is a 2EXPTIME-complete
problem. To enable practical solutions to this problem, [25] introduces a symbolic approach to the LTL f
synthesis problem. The applications of those results in the field of robot planning are studied in [14, 12, 13].
In [18], the fundamental problem of LTL f satisfiability checking is studied through a SAT-based approach.
The results of those studies show that more scalable tools can be built by treating LTL f natively, rather
than reducing to LTL, even though LTL reasoning is a more mature and extensively studied domain.
The underlying assumption in all those works is that the system is either purely deterministic or purely
nondeterministic. Hence, it is natural to ask whether similar results can be obtained for probabilistic
systems. That is, do native LTL f techniques outperform reasoning by reduction to LTL?

Formal synthesis on probabilistic systems has been extensively studied in the formal-verification
literature. In those studies, MDPs are a de facto modeling tool for the probabilistic system, and LTL and
PCTL (probabilistic computation temporal logic) [5] are the specification languages of choice. For LTL
synthesis, the approach is based on first translating the specification to a deterministic Rabin automaton
(DRA) and then solving a stochastic shortest path problem [22, 8] on the product of the DRA with the
MDP. Tools such as PRISM [17] can solve this LTL synthesis problem efficiently with their symbolic
engine. LTL f synthesis for probabilistic systems, however, has not been studied, and it is not clear
whether the same tools can be extended for LTL f reasoning with a similar efficiency.

Assigning rewards based on temporal goals has also been studied in the context of planning. In [21],
a logic similar to LTL f , $FLTL, is considered; however, this logic cannot express properties such as
“Eventually.” In [3, 4], PastLTL is used to describe finite properties associated with rewards. PastLTL
and LTL f naturally express different properties (see [21]). In [7, 6], rewards can be attached to LTL f or
linear dynamic logic on finite traces (LDL f ) [9] formulas. In all of these MDP planning works, the goal is
to maximize rewards rather than to study the behavior of the MDP. These approaches use approximations
that give lower bounds and converging only in the limit. Thus, they cannot necessarily give a negative
answer to a decision query about a synthesis problem (e.g., does a policy with at least 95% probability
into success exist?).

In this work, we present the problem of LTL f synthesis for MDPs. In approaching this problem,
we specifically seek to answer the empirical question of which approach is more efficient; an approach
based on the mature and well-studied LTL synthesis or an approach based the unique properties of LTL f
itself. The answer to this question can have a broader impact on the employment of formal methods for
probabilistic systems. Hence, we introduce two solutions to this problem. The first one is based on a
reduction to an LTL synthesis problem, and the second one is a native approach. For the first approach,
we show a translation of the LTL f specification to LTL and a corresponding augmentation of the MDP
that allows us to use standard tools for LTL synthesis. For the second approach, we use specialized tools
to obtain an automaton that we input to standard tools in order to solve the problem.

Even though both approaches have the same theoretical complexity bound [5, 10], we demonstrate
that the native approach scales better than the translation to LTL through a series of benchmarking case
studies. For a complete, online version of the paper, please see [24]. Our code and examples are available
on GitHub [23].
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2 Problem Formulation

Our goal is to synthesize a policy for an MDP such that the probability of satisfying a given LTL f
property is maximized. First we introduce the formalisms needed to define this problem. In Section 2.1,
we introduce Markov processes and define the labeling of a path on these processes and the probability
measure associated with a set of paths. Next, we introduce LTL and the finite-trace version LTL f in
Section 2.2. We then define when a path on an MDP to satisfies an LTL or LTL f formula as well as the
probability of satisfaction in Section 2.3. Finally, we give our formal problem definition in Section 2.4.

2.1 Markov Processes

Markov processes are frequently used to model systems that exhibit stochastic behavior. While this paper
deals with MDPs, it is also important to define Discrete-Time Markov Chains (DTMCs) as they are needed
to define probability measures.

Definition 1 (DTMC). A labeled Discrete-Time Markov Chain (DTMC) is a tuple D = (S,P,sinit,AP,L),
where S is a countable set of states, sinit ∈ S is the initial state, AP is a finite set of atomic propositions,
L : S→ 2AP is a labeling function, and P : S× S→ [0,1] is a transition probability function where
∑s′∈S P(s,s′) = 1 for all s ∈ S.

An execution of a DTMC is given by a path as defined below.

Definition 2 (Path). A path w through a DTMC is an infinite sequence of states:

w = s0s1 . . .sn . . . , such that P(si,si+1)> 0 ∀i≥ 0.

Paths(s) is the set of paths starting in s. A finite path is one with a last state sn. Paths f in(s) is the set of all
finite paths starting in s. For every path w ∈ Paths(s), pre(w) denotes the set of prefixes of w (similarly
for w ∈ Paths f in(s)).

A trace or labeling of a path is the sequence of labels of the states in the path.

Definition 3 (Labeling of a Path). A labeling (also referred to as valuation or trace) of an infinite path
w= s0s1 . . .sn . . . is the sequence L(s0)L(s1) . . .L(sn) . . . The labeling of a finite path is defined analogously.
We use L(w) to denote the labeling of w.

To reason over the paths of a DTMC probabilistically, we need to define a probability space with a
probability measure over infinite paths. To this end, we first define cylinder sets that extend a finite path to
a set of infinite paths.

Definition 4 (Cylinder Set for DTMC). The cylinder set for some finite path w ∈ Paths f in(sinit), denoted
by Cyl(w), is the set of all infinite paths that share w as a prefix:

Cyl(w) = {w′ ∈ Paths(sinit) | w ∈ pre(w′)}. (1)

Definition 5 (Probability Measure over Paths of a DTMC). For the probability space (Ω,E ,Pr), where
sample space Ω = Paths(sinit), event space E is the smallest σ -algebra on Ω containing the cylinder sets
of all finite paths (i.e., Cyl(w) ∈ E for all w ∈ Paths f in(sinit)), the probability measure Pr is defined as:

Pr(Cyl(s0 . . .sn)) = ∏
0≤i<n

P(si,si+1), (2)

where s0 = sinit. We define Pr(Cyl(sinit)) = 1.
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Some systems exhibit not only probabilistic behavior but also non-deterministic behavior. These
systems are typically modeled as Markov Decision Processes (MDPs). MDPs extend the definition of
DTMCs by allowing choices of actions at each state.
Definition 6 (MDP). A labeled Markov Decision Process (MDP) is a tuple: M = (S,A,P,sinit,AP,L),
where sinit , AP and L are as in Def. 1 and:
• S is a finite set of states;

• A is a finite set of actions, and A(s)⊆ A denotes the set of actions enabled at state s ∈ S;

• P : S×A×S→ [0,1] is the transition probability function where ∑s′∈S P(s,a,s′) = 1 for all s ∈ S
and a ∈ A(s).

s0

{p1}

s1

{p2}

s2

{p1, p2}

s3

/0

0.5

0.5

1
a0

1

a0 1a1

1

a0

1
a0

a1

Figure 1: Example MDP.

Example 1. An example of an MDP is show in Figure 1.
Actions (A = {a0,a1}) and probabilities are shown as edge
labels. State names are within each state and state labels are
above each state.

The notion of path can be straightforwardly extended
from DTMCs to MDPs.
Definition 7 (Path through MDP). A path w through an MDP
is a state followed by a sequence of action-state pairs:

w = s0〈a0,s1〉〈a1,s2〉 . . .〈an−1,sn〉 . . .

such that s0 = sinit, ai ∈ A(si), and P(si,ai,si+1)> 0 for all i≥ 0. Paths(s), Paths f in(s) and pre(w) are
defined analogously to the DTMC case.

A policy (also known as an adversary or strategy) resolves the choice of actions. This induces a
(possibly infinite) DTMC.
Definition 8 (Policy). A policy π : Paths f in→ A maps every finite path w = s0〈a0,s1〉〈a1,s2〉 . . .〈an−1,sn〉
to an element of A(sn), i.e., π(w) ∈ A(sn).1

The set of all policies is Π. A policy is stationary if π(w) only depends on the most recent state sn of w
denoted by last(w). Under policy π the action choices on M are determined. This gives us a DTMC
whose states correspond to the finite paths of the MDP. We call this the DTMC induced on M by policy
π and denote this by Dπ . Pathsπ(s) is shorthand for Paths(s) of Dπ . Therefore, the probability of the
paths of the MDP under π are defined according to Dπ , whose probability space includes a probability
measure Prπ over infinite paths via cylinder sets that extend a finite path to a set of infinite paths. See [5]
for details.

2.2 Linear Temporal Logic

Linear temporal logic (LTL) is a popular formalism used to specify temporal properties. Here, we are
interested in LTL interpreted over finite traces, but we must still define LTL as we use a reduction to LTL
as one of our two approaches to synthesis.
Definition 9 (LTL Syntax). An LTL formula is built from a set of propositional symbols Prop and is
closed under the boolean connectives as well as the “next” operator X and the “until” operator U:

ϕ ::=> | p | (¬ϕ) | (ϕ1∧ϕ2) | (Xϕ) | (ϕ1Uϕ2),

where p ∈ Prop.
1Here, we focus on deterministic policies as they are sufficient for optimality of LTL (and LTL f ) properties on MDPs [5].



Wells et al. 5

The common temporal operators “eventually” (F) and “globally” (G) are defined as: F ϕ =>U ϕ and
Gϕ =¬F¬ϕ . The semantics of LTL are defined over infinite traces (for full definition, see [20]). An LTL
formula ϕ defines an ω-regular language L (ϕ) over alphabet 2Prop, i.e., L (ϕ)= {ρ ∈ (2Prop)ω | ρ |=ϕ}.

Next we define LTL f . To distinguish between the formulas of the two logics, we use ϕ for LTL and
φ for LTL f formulas.

Definition 10 (LTL f Syntax & Semantics). An LTL f formula has identical syntax to LTL, but the
semantics is defined over finite traces. Let |ρ| and ρi denote the length of trace ρ and the symbol in the ith

position in ρ , respectively, and ρ, i |= φ is read as: “the ith step of trace ρ is a model of φ .” Then,

• ρ, i |=>;

• ρ, i |= p iff p ∈ ρi;

• ρ, i |= ¬φ iff ρ, i 6|= φ ;

• ρ, i |= φ1∧φ2, iff, ρ, i |= φ1 and ρ, i |= φ2;

• ρ, i |= Xφ iff |ρ|> i+1 and ρ, i+1 |= φ ;

• ρ, i |= φ1Uφ2 iff ∃ j s.t. i≤ j < |ρ| and ρ, j |= φ2 and ∀k, i≤ k < j, ρ,k |= φ1.

We say finite trace ρ satisfies formula φ , denoted by ρ |= φ , iff ρ,0 |= φ . An LTL f formula φ defines a
language L (φ) over the alphabet 2Prop. L (φ) is a regular language, i.e., L (φ) = {ρ ∈ (2Prop)∗ | ρ |= φ}.

2.3 Satisfaction of Temporal Logic Specification

Here, we define what it means for an MDP to satisfy an LTL or LTL f formula.

Definition 11 (Path satisfying LTL). For a pair (M , ϕ) of an MDP and an LTL formula where the
atomic propositions of M match the propositions of ϕ (i.e., Prop = AP), we say that an infinite path w on
M satisfies specification ϕ if the labeling of w is in the language of ϕ , i.e., L(w) ∈L (ϕ).

Following [25], we define finite satisfaction (of an LTL f formula) as follows.

Definition 12 (Path satisfying LTL f ). For a pair (M , φ ) of an MDP and an LTL f formula where the
atomic propositions of M match the propositions of φ (i.e., Prop = AP), we say that a (possibly finite)
path w of M satisfies specification φ if at least one prefix of w is in the language of φ , i.e.,

w |= φ ⇔ ∃w′ ∈ pre(w) s.t. L(w′) ∈L (φ). (3)

Intuitively, this corresponds to a system that can declare its execution complete after satisfying its goals.
LTL f is suitable for specifications that are to be completed in finite time.

Definition 13 (Probability of LTL f satisfaction). The probability of satisfying an LTL f property φ in M
under policy π is Pr(M π |= φ) = Prπ(w ∈ Pathπ(sinit) | w |= φ).

2.4 Problem Statement

We formalize the problem of LTL f synthesis on MDPs as:

Problem 1 (LTL f synthesis on MDPs). Given MDP M and an LTL f formula φ , compute a policy π∗

that maximizes the probability of satisfying φ , i.e.,

π
∗ = argmax

π∈Π
Pr(M π |= φ),

as well as this probability, i.e., Pr(M π∗ |= φ).
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3 Synthesis Algorithms

We introduce two approaches to LTL f policy synthesis on MDPs. The first approach is based on reduction
to classical LTL policy synthesis on MDPs. The second approach is through a translation of LTL f
formulas to first order logic formulas, which can be translated to a symbolic deterministic automaton. In
this section, we detail these two algorithms, and in Section 4, we show that the second approach scales
better than the classical LTL approach.

3.1 Reduction to LTL Synthesis

We can reduce the problem of LTL f policy synthesis on MDPs to a classical LTL policy synthesis. The
algorithm consists of two main steps: (1) construction of an MDP M ′ from M by augmenting it with an
additional state and atomic proposition, and (2) translation of LTL f formula φ on the labels of M to its
equivalent LTL formula ϕ on the labels of M ′.

3.1.1 Augmented MDP

Recall that the semantics of LTL f formulas is over finite traces whereas the interpretation of LTL formulas
is over infinite traces. In order to reduce the LTL f synthesis problem to an LTL one, we need to be able to
capture the finite paths (traces) of M that satisfy φ and extend them to infinite paths (traces). Specifically,
we need those satisfying finite paths that contain no φ -satisfying prefixes, i.e., satisfy φ for the first time.
To this end, we allow the environment (policy) to decide when to “terminate.” We view the system to
be “alive” until termination, at which point it is no longer alive. Then, we define an LTL formula that
requires the system to be alive while it has not satisfied φ and to terminate after satisfying φ .

To this end, we augment MDP M with a terminal action and state and an atomic proposition alive.
Formally, we construct MDP M ′ = (S′,A′,P′,s′init,AP′,L′), where S′ = S∪ {sterm}, A′ = A∪ {aterm},
s′init = sinit, AP′ = AP∪{alive},

A′(s) =

{
A(s)∪{aterm} if s 6= sterm

{aterm} if s = sterm
, L′(s) =

{
L(s)∪{alive} if s 6= sterm

/0 if s = sterm
,

P′(s,a,s′) =


P(s,a,s′) if s ∈ S, a ∈ A,s′ ∈ S
0 if s ∈ S, a ∈ A,s′ = sterm

1 if s ∈ S′,a = aterm,s′ = sterm

.

In this MDP, the system can decide to terminate by taking action aterm, in which case it transitions to
state sterm with probability one and remains there forever. The labeling of the corresponding path includes
the atomic proposition alive at every time step until sterm is visited and is empty thereafter.

s0

{p1,alive}

s1

{p2,alive}

s2

{p1, p2,alive}

s3

{alive}

sterm

/0

0.5

0.5

1
a0

aterm

1

a0 1a1

aterm

1

a0 aterm

1
a0

aterm

aterm

a1

Figure 2: Augmented MDP constructed from M in Fig. 1.

Example 2. Figure 2 illustrates the aug-
mented MDP M ′ constructed from the exam-
ple MDP M in Figure 1. State sterm along
with the dashed edges and atomic proposition
alive are added to M . The dashed edges are
enabled by action aterm and have transition
probability of one. The label of sterm is the
empty set, and the labels of the rest of the
states contain alive.
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With this augmentation, the system is able to terminate once a satisfying finite path is generated. Then,
we can show that the probability of the set of infinite paths with satisfying prefixes on MDP M is equal
to the probability of infinite paths of M ′ in the form w f in(sterm)

ω , where w f in is a satisfying prefix, and
(sterm)

ω is the suffix.
Let Paths f in,φ ⊆ Pathsπ

f in(sinit) be a set of finite paths of interest of MDP M under policy π ∈ Π.
Denote the probability of infinite paths with prefixes from Paths f in,φ by

Pr(M π |= Paths f in,φ ) = Prπ(w ∈ Pathπ(sinit) | pre(w)∩Paths f in,φ 6= /0). (4)

Furthermore, define policy π ′ ∈Π′ on the augmented MDP M ′ as

π
′(w f in) =

{
π(w f in) if w f in /∈ Paths f in,φ ∧ last(w f in) 6= sterm

aterm otherwise
(5)

Then, it can be shown (see Lemma 2) that: Pr(M π |= Paths f in,φ ) = Pr(M ′π ′ |= Paths f in,φ ). Lemma 2
generalizes this result.

Lemma 2. Let Paths f in,φ ⊆ Paths f in(sinit) be a set of finite paths of interest of MDP M . Further, let Π′

be a set of all policies of augmented MDP M ′ such that if π ′ ∈Π′, then

π
′(w f in) ∈

{
{aterm} if w f in ∈ Paths f in,φ (sinit)∨ last(w f in) = sterm

A(last(w f in)) otherwise
(6)

It holds that: maxπ∈Π Pr(M π |= Paths f in,φ ) = maxπ ′∈Π′ Pr(M ′π ′ |= Paths f in,φ ).

Proofs of this lemma and the below theorem are available in the appendix.
An LTL f formula on M can be translated to its equivalent LTL formula on M ′ following [9].

3.1.2 LTL f to LTL

To translate an LTL f formula on M to its equivalent LTL formula on M ′, we follow [9]. Let Φ f be
the set of LTL f formulas φ defined over atomic propositions in AP and Φ be the set of LTL formulas ϕ

defined over AP′. Then g : Φ f →Φ is defined as:

g(φ) = t(φ) ∧
(
aliveU (G¬alive)

)
,

where t : Φ f →Φ is inductively defined as:

• t(p) = (p∧alive), where p ∈ AP;

• t(¬φ) = ¬t(φ);

• t(φ1∧φ2) = t(φ1)∧ t(φ2);

• t(X φ) = X (alive ∧ t(φ));

• t(φ1 U φ2) = t(φ1)U (alive ∧ t(φ2)).

In this construction, mapping t ensures that alive is present in the last letter of every finite trace that
satisfies φ . Then, g translates φ to ϕ by requiring alive to be true until φ is satisfied and false thereafter.
In other words, the translated LTL formula ϕ = g(φ) requires the system to terminate after it satisfies φ .
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Theorem 3. Given an MDP M and an LTL f formula φ , the maximum probability of M |= φ is given by
maxπ∈Π Pr(M |= φ) = maxπ ′∈Π′ Pr(M ′ |= g(φ)), where M ′ is the augmented MDP, Π′ is the set of all
policies in M ′, and g(φ) is the LTL formula obtained from φ .

A proof is available in the appendix.
A direct result of the above theorem is the reduction of LTL f policy synthesis to classical LTL policy

synthesis on MDPs.

Corollary 4. The policy synthesis to maximize the probability of satisfying LTL f formula φ on M can
be reduced to the LTL maximal policy synthesis problem.

Therefore, to solve Problem 1, we can use LTL synthesis on augmented MDP M ′ and property
ϕ = g(φ). The general LTL synthesis algorithm is well-established [5] and follows the following steps:
(1) translation of the LTL formula to a DRA, (2) composition of the DRA with the MDP, which results in
another MDP called the product MDP, (3) identification of the maximal end-components on the product
MDP that satisfy the accepting condition of DRA, and finally (4) solving the maximal reachability
probability problem (stochastic shortest path problem) [8] on the product MDP with the accepting end-
components as the target states. There exist many tools such as PRISM [17] that can solve the LTL
synthesis problem. Specifically, PRISM has a symbolic implementation of this algorithm, enabling fast
computations. In Section 4, however, we show that the native approach introduced below outperforms the
LTL-reduction approach even by using PRISM’s symbolic engine.

3.2 Native Approach

In the native approach, we first convert the LTL f formula into a deterministic finite automaton (DFA)
using specialized tools. Then we take the product of this automaton with the MDP. Finally, we synthesize
a strategy by solving the maximal reachability probability problem on this product MDP.

3.2.1 Translation to DFA

A Deterministic Finite Automaton (DFA) is a tuple: A = (Q,Σ,δ ,q0,F), where Q is the set of states,
Σ the alphabet, δ the transition function, q0 the initial state and F the set of accept states. A finite
run of a DFA on a trace ρ = ρ0ρ1 . . .ρn, where ρi ∈ Σ, is the sequence of states q0q1 . . .qn+1 such that
qi+1 = δ (qi,ρi) for all 0≤ i≤ n. This run is accepting if qn+1 ∈ F .

Following [25], we translate LTL f to a DFA using MONA [15]. LTL f is expressively equivalent
to First-order Logic on finite words, which in turn is a fragment of Weak Second-order Theory of One
Successor. We use the translation given in [9] to convert LTL f formula φ to a First-order Logic formula.
MONA offers translations from Weak Second-order Theory of One or Two Successors (WS1S/WS2S) to
a DFA that accepts precisely the language of our LTL f formula φ . We denote this DFA by Aφ .

3.2.2 Product of DFA with MDP

Given DFA Aφ , we can take the product with the MDP M to achieve a new MDP M×Aφ as follows.
The product of MDP M = (S,A,P,sinit,AP,L) and DFA Aφ = (Q,Σ,q0,δ ,F) is an MDP

M ×Aφ = (S×Q,A,PM×Aφ ,(sinit,qinit)),

where qinit = δ (q0,L(sinit)), and

PM×Aφ ((s,q),a,(s′,q′)) =

{
P(s,a,s′) if q′ = δ (q,L(s))
0 otherwise

.
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The paths of this product MDP have one-to-one correspondence to the paths of MDP M as well as the
runs of Aφ . Therefore, the projection of the paths of M ×Aφ that reach state (s,q), where q ∈ F , on Aφ

are accepting runs and on M are φ -satisfy paths. Thus, we solve Problem 1 by synthesizing an optimal
policy on this product MDP, using standard tools for the maximal reachability probability problem as
discussed in Sec. 3.1. The resulting policy is stationary on the product MDP but history-dependent on M .

Compared to the LTL-based approach, the direct translation to a DFA offers better runtime and
memory usage. Additionally, it produces a minimal DFA while the LTL pipeline produces an ω-
automaton which cannot be minimized effectively by existing tools. We show the benefits of the native
approach experimentally in Sec. 4.

4 Evaluation
We evaluate the proposed synthesis approaches through a series of benchmarking case studies. Below, we
provide details on our implementation, experimental scenarios, and obtained results. A version of our tool
along with examples is available on GitHub [23].

4.1 Experimental Framework

We run our experiments using the PRISM framework [17]. PRISM uses a symbolic encoding of MDPs as
well as an encoding of automata as a list of edges, where the labels of edges are encoded symbolically
using BDDs. PRISM supports several tools for the LTL-to-automata translation. We tested PRISM’s
built-in translator as well as Rabinizer, LTL3DRA and SPOT [16, 1, 11]. Of these, PRISM’s built in
conversion and SPOT performed significantly better than the others, and were used for evaluation.

In the implementation of the LTL-reduction approach, we augment the MDP and convert the LTL f
formula into an equivalent LTL formula as described in Section 3.1. Then, we input both the LTL formula
and the modified MDP into PRISM for synthesis. In the implementation of the native approach, we invoke
PRISM on the original LTL f formula and MDP and use an external tool to convert the LTL f formula into
a DFA using MONA [15] then convert from MONA’s format to the HOA format [2]. Note that external
tools (SPOT and our native approach) read from hard disk, whereas using PRISM’s built-in conversion
avoids this. Nevertheless, even including this time, the native approach (and sometimes SPOT) typically
gives better performance as shown below. All experiments are run on a computer with an Intel i7-8550U
and 16GB of RAM. PRISM is run using the default settings.

4.2 Experimental Scenarios

4.2.1 Test MDPs

We consider four types of MDPs: Gridworld, Dining Philosophers, Nim, and Double Counter. In
Gridworld, an agent is given some goal as an LTL f formula and must maximize the probability of
satisfaction. The agent has four actions: North, South, East, and West. Under each action, the probability
of moving to the cell in the intended direction is 0.69, then 0.01 for its opposite cell, and finally 0.1 for
each of the other directions and for remaining in the same cell. If the resulting movement would place
the agent in collision with the boundary, the agent remains in its current cell. We model the motion
of this agent as an MDP, where the states correspond to the cells of the grid and the set of actions is
{anorth,asouth,aeast,awest}.

We base the Dining-Philosophers domain on the tutorial from the PRISM website. We consider a ring
of five philosophers with two different specifications. Note that typical Dining-Philosophers specifications
of interest are infinite-trace; our tests are merely meant to show that our approach works on MDPs other
than Gridworld. Both Nim and Double Counter are probabilistic versions of games presented in [19].
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4.2.2 Test formulas

Unfortunately, there is no standard set of LTL f formulas that we can use for benchmarking. In [25],
random LTL formulas are used as the basis of LTL f benchmarks; however, because we also consider an
MDP, random formulas are frequently tautologies or non-realizable with respect to the MDP. For instance,
consider a randomly generated formula φ = p1U p2, where p1 and p2 are randomly assigned to the labels
of the states in the Gridworld MDP. There is likely no path of the MDP that can satisfy this formula.
As a matter of fact, in a test of more than 70 randomly generated LTL f formulas and Gridworld MDPs,
only one was “interesting” (yielding probability between zero and one) on the corresponding MDP. For
benchmarking, the interest is in sets of formulas that make sense in a probabilistic setting.

Therefore, as the first set of test formulas for the Gridworld MDP, we considered a natural finite-trace
specification where the agent has n goals to accomplish in any order, as well as a “safety” property where
it must globally avoid some states. This is typical of e.g., a robotics domain [13]. We use Fn to denote
this formula for a given n. For the second set of test formulas, we keep regions to visit and avoid but
introduce some ordering and repeat visits. OS is a short formula introducing order and OL is a longer
formula that also contains nested temporal operators. All formulas are given in the appendix.

For the Dining Philosophers domains, typical examples focus on infinite-run properties. We test
several finite-run properties on these domains. These properties are meant to illustrate our tool on an MDP
other than Gridworld, but are not representative of typical finite-trace properties. One version (D5) asserts
that all philosophers must eat at least once. The other (D5C) is a more complex property involving orders
of eating. Both formulas are available in the appendix of the online version [24].

For Nim, the game of Nim is played against a stochastic opponent. To increase difficulty, the
specifications require that randomly chosen stack heights are to be reached or avoided by the system
player. For Double Counter, two four-bit binary counters are used. One counter is controlled by a
stochastic environment, and the other is controlled by the system. The aim of the system is to make its
counter match that of the environment.

4.3 Experimental Results

We provide experiments varying the complexity of the formulas and of the MDPs. Total runtime is shown
in seconds. We refer to the translation to LTL as the “LTL pipeline” and the translation to a DFA via
MONA as the “Native pipeline.” All plots are best viewed in color.

4.3.1 Automata Construction

First we measure how the length of the formula affects the synthesis computation time. For all of these
experiments, we use a 10×10 Gridworld as the original MDP. For small formulas, the time needed to
read the HOA file from hard disk outweighs the shorter construction time and smaller automata of the
native approach as shown in Figure 3a. For formulas longer than F3, the native approach offers better
computation time (e.g., see Figure 3b and Figure 3c).

PRISM successfully builds automata for formulas up to F9. In Figure 3d, we highlight the superiority
of the native approach in constructing the automaton for F10. For this formula, PRISM runs out of
memory when constructing the automaton according to the LTL pipeline. SPOT completes for F10 but
runs out of memory on F11. MONA works for formulas up to F17, which takes 8.586 seconds to compute,
though writing the resulting file to disk is prohibitively expensive (the file is larger than 10GB). MONA
runs out of memory constructing the automaton for F18.

We also considered a Gridworld with random obstacles (Figure 3e) and with hallways (Figure 3f), both
with the formula F9. Finally, we consider two other formulas (OS and OL) in Figure 3g and Figure 3h to
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(a) 10×10 grid with F3. (b) 10×10 grid with F8. (c) 10×10 grid with F9.

(d) 10×10 grid with F10. (e) Random grid with F9. (f) Hallway grid with F9.

(g) 10×10 grid with OS. (h) 10×10 grid with OL. (i) 50×50 grid with F8.

(j) 100×100 grid with F8. (k) 5 Dining Philosophers with D5. (l) 5 Dining Philosophers with D5C.

Figure 3: Runtime results for the Gridworld and Dining Philosophers MDPs with the LTL (PRISM and
SPOT) and native pipelines.

demonstrate that our improvement is not tied to the specific form of the specification.
For the Dining-Philosophers example, we consider five philosophers. Again, our results show that the

native pipeline is faster and more memory efficient than the other approaches for automata construction
(Figure 3l). However, the Dining-Philosophers example illustrates an issue where PRISM’s built-in
automata translation sometimes constructs automata such that computing the maximal accepting end-
component using BDDs within PRISM is significantly faster (Figure 3k). The automata construction is
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still slower than both SPOT and our native approach, and the automata returned have more states, but
the BDD representation is more efficient. This issue affects some automata, not only for our tool, but
also for other external tools we tested. This means not only automata construction and size, but also the
BDD representation are important for overall runtime. However, PRISM’s built-in translator’s memory
usage scales more poorly than SPOT or our native approach. On a more complex formula Figure 3l,
PRISM’s built-in construction runs out of memory, even though SPOT and the native approach can
finish construction in less than ten seconds. Thus, for sufficiently complex formulas, PRISM’s built-in
translation is not viable. This suggests a need for automata construction methods that are not only more
efficient but also produce automata that work well within PRISM.

(a) 200-height random Nim game. (b) Double-Counter game.

Figure 4: Runtime results for the Nim and Double-Counter games.

In the Nim game, the native
approach far outperforms both
Prism and Prism with SPOT (Fig-
ure 4a). In the Double-Counter
game, Prism runs out of memory
and Prism with SPOT times out
after more than 3 hours, whereas
the native approach completes
synthesis is less than 5 seconds.

Overall we observe that for
large formulas the native pipeline
offers significantly better scalability than the LTL pipeline (tested with PRISM’s built-in translator, SPOT,
Rabinizer, and LTL3DRA automata translators). With an implementation that does not access the hard
disk, we expect even better performance of the native pipeline.

4.3.2 Automata Size

The DFA generated by the native pipeline is minimal and typically much smaller than the LTL pipeline’s
DRA. SPOT and PRISM typically produce similarly sized DRAs. Because we take the product of the
input MDP with these automata, we expect the size of the resulting product to be smaller in the native
pipeline. Table 1 shows the automaton sizes for the various formulas. Table 2 shows the sizes of the
product MDPs for the LTL and native pipelines respectively.

Interestingly, while the size of the DFA obtained from MONA is roughly half the size of the DRA
constructed by PRISM, the final sizes of the products of the MDP and the automata are comparable
for both approaches. The number of states, transitions and nondeterministic choices are all measured
after reachability analysis is performed. We see time savings in the reachability analysis and product
construction phases (both about two times faster), but the final products are similar in size. However, the
product from the native pipeline has fewer nondeterministic transitions than the product from the LTL
pipeline. The improvements from this are small relative to the time it takes to construct a large MDP.

Examples of this are shown in Figure 3i and Figure 3j. Note that the majority of the computation time
is spent constructing the MDPs. For the LTL pipeline, this construction takes slightly longer time because
of the augmented MDP. It is important to note that the native approach allows us to use larger formulas
with these models whereas the LTL pipeline is limited to F10 or smaller.

In summary, we observe that the native pipeline is the most efficient in terms of both runtime and
memory. There are two possible drawbacks to the native pipeline. First, it requires reading from disk,
which for small formulas negates the advantage in automata construction time. Second, PRISM’s built-in
automata translation sometimes constructs automata whose BDD representations work better within
PRISM than automata from any external tools we tested.
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Table 1: Sizes of the automata from LTL (DRA) and native (DFA) pipelines.

F3 F8 F9 F10 OS OL D5 D5C Nim Counter
DRA states 19 512 1,027 NA 515 1,028 67 NA 701 NA
DFA states 10 258 514 1,026 258 259 33 29 67 130

Table 2: Sizes of the product MDP in the LTL pipeline and native pipelines.
10x10 F3 10x10 F8 10x10 F9 50x50 F8 100x100 F8 10x10 F10 10x10 OS

States (LTL) 890 24,678 48,998 641,478 2,568,978 NA 24,678
States (Native) 881 24,421 48,485 641,221 2,568,721 96357 24,421
Transitions (LTL) 17,130 475,030 942,742 13,265,398 53,537,298 NA 475,030
Transitions (Native) 16,256 450,468 893,760 12,623,936 50,968,336 1775424 450,368
Choices (LTL) 4,410 122,358 242,934 3,206,358 12,843,858 NA 122,358
Choices (Native) 3,524 97,684 193,940 2,564,884 10,274,884 385428 97,684

OL 10x10 rand 10x10 halls 5 Phil D5 5 Phil D5C Nim Counter
States (LTL) 24,935 44,253 19,476 4,548,220 NA 2115 NA
States (Native) 24,519 43,740 19,187 1,476,976 93,068 404 449
Transitions (LTL) 475,287 804,097 310,996 46,948,710 NA 8343 NA
Transitions (Native) 452,172 759,856 291,536 7,891,750 494,420 1205 908
Choices (LTL) 122,615 219,209 96,220 44,059,330 NA 6297 NA
Choices (Native) 98,076 174,960 76,748 6,895,580 437,050 808 460

5 Conclusion
We introduced the problem of LTL f synthesis for probabilistic systems and presented two approaches.
The first one is a reduction of LTL f to LTL with a corresponding augmentation of the MDP. The second
approach uses native tools to construct an automaton and then takes the product of this automaton with the
MDP to construct a product MDP that can be used for synthesis through standard techniques. We showed
that this native approach offers better scalability than the reduction to LTL. Our work opens the door to
the use of LTL f synthesis on practical domains such as robotics, cf. [13]. Our tool is on GitHub [23].

For future work we would like to expand our results to include probability minimization (c.f. The-
orem 3). Our native approach extends easily, but there are subtleties that prevent applying the LTL
pipeline to minimization. We are also interested in a fully symbolic methodology, where the automaton is
represented symbolically and the product is also taken symbolically. We would like to further investigate
the issue we discovered where external tools quickly find automata with fewer states than PRISM’s built-in
method, but for which computing maximal accepting end-components in the product MDP takes much
longer. We are also interested in applying the work to robotics domains.
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F

Proof of lemma 2.

Proof. We prove by contradiction. Recall that M π and M ′π ′ are both DTMCs, and the probability
measure is defined over infinite paths using cylinder sets in 5. Assume to the contrary that

max
π∈Π

Pr(M π |= Paths f in,φ )> max
π ′∈Π′

Pr(M ′π ′ |= Paths f in,φ )

Then for an optimal policy π∗ all paths w = s0 . . .sn ∈ Paths f in,φ we have probability measure given by the
cylinder set Pr(Cyl(s0 . . .sn)) = ∏0≤i<n P(si,π

∗(si),si+1). But because of (6), we know that there exists
an equivalent policy π ′∗ (with paths w′) where the actions can be chosen such that the probabilities are the
same π ′∗(w′f in) = π∗(w f in) if w f in /∈ Paths f in,φ ∧ last(w f in) 6= sterm. Thus the probability measure from
the cylinder sets of these paths will be equivalent. Furthermore the probability for aterm is always 1, which
does not change the product. Thus there must be a π ′∗ yielding the same probability. This presents a
contradiction. So:

max
π∈Π

Pr(M π |= Paths f in,φ )≤ max
π ′∈Π′

Pr(M ′π ′ |= Paths f in,φ )

The second case is analogous. Assume to the contrary that

max
π∈Π

Pr(M π |= Paths f in,φ )< max
π ′∈Π′

Pr(M ′π ′ |= Paths f in,φ )

Then for an optimal policy π ′∗ all paths w′ = s0 . . .sn ∈ Paths f in,φ we have probability measure given by
the cylinder set Pr(Cyl(s0 . . .sn)) = ∏0≤i<n P(si,π

′∗(si),si+1). But because of (6), we know that there
exists an equivalent policy π∗ (with paths w) where the actions can be chosen such that the probabilities
are the same π∗(w f in) = π ′∗(w′f in) if w f in /∈ Paths f in,φ ∧ last(w f in) 6= sterm. And last(w f in) = sterm only
after aterm has been taken and no other actions are available in sterm. The probability for aterm is always 1,
which does not change the product. Thus the probability measure from the cylinder sets of these paths will
be equivalent. Thus there must be a π∗ yielding the same probability. This presents a contradiction. So:

max
π∈Π

Pr(M π |= Paths f in,φ )≥ max
π ′∈Π′

Pr(M ′π ′ |= Paths f in,φ )

�

Proof of Theorem 3

Proof. This follows through an application of Lemma 2 and a proof that the finite paths on M satisfying
φ correspond to the infinite paths on on M ′ satisfying ϕ = g(φ). We consider both directions:

Let w be a finite path satisfying φ . Then from [9], it follows that paths satisfying φ will also satisfy ϕ

assuming the alive proposition of ϕ is set precisely when the path w ends. (5) ensures that this is the case.
Let w′ be an infinite path satisfying ϕ . Then from [9], it follows that paths satisfying ϕ will also

satisfy φ assuming the alive proposition of ϕ is set to symbolize an end of the execution of w′ on M ′. (5)
ensures that this is the case.

�
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G

We use the following LTL f formulae:
F3:

(F "loca") & (G !"bad")

F8:

(F "loca") & (F "locb") & (F "locc") & (F "locd")
& (F "locaa") & (F "locab") & (F "locac")
& (F "locad") & (G !"bad")

F9:

(F "loca") & (F "locb") & (F "locc") & (F "locd")
& (F "loce") & (F "locf") & (F "locg")
& (F "loch") & (F "loci") & (G !"bad")

F10:

(F "loca") & (F "locb") & (F "locc") & (F "locd")
& (F "loce") & (F "locf") & (F "locg")
& (F "loch") & (F "loci") & (F "locj") & (G !"bad")

OS:

(F "loca") & (F "locb" & (F "locc")) & (F "locc" & (F "locb"))
& (F "locd") & (F "loce") & (F "locf")
& (F "locg") & (F "loch") & (G !"zbad")

OL:

(F "loca") & (F "locb" & (F "locc")) & (F "locc" & (F "locb"))
& (F "locd" & (F "loce")) & (F "loce" & (F "locd"))
& (F "locf" & (F "locg")) & (F "locg" & (F "locf"))
& (F "loch") & (G F "loci") & (G !"zbad")

D5:

(F "eat1") & (F "eat2") & (F "eat3") & (F "eat4") & (F "eat5")

D5C:

((F "eat1") & (F "eat2")) |
((((("eat1" U "eat2") U "eat3") U "eat4") U "eat5") |
("eat1" U ("eat2" U ("eat3" U ("eat4" U "eat5")))))

Nim:

(F(G !"robotwin")) & (F("x46")) | (X (!("x120"))) &
(F("x6")) | (F("x165")) | (G(!("x111"))) &
(F("x127")) & (X (!("x12"))) | (X (!("x36"))) &
(G(!("x102")))
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Double Counter:

(G((!( (X !"p0") & (X !"p1") & (X !"p2") & (X !"p3") ) |
( ((!"p0") & (!"p1") & (!"p2") & (!"p3") ) | ((!"p0") &
(!"p1") & (!"p2") & ("p3") ))) & (!( (X !"p0") & (X !"p1") &
(X !"p2") & (X "p3") ) | ( ((!"p0") & (!"p1") & (!"p2") & ("p3") ) |
((!"p0") & (!"p1") & ("p2") & (!"p3") ))) & (!( (X !"p0") & (X !"p1") &
(X "p2") & (X !"p3") ) | ( ((!"p0") & (!"p1") & ("p2") & (!"p3") ) |
((!"p0") & (!"p1") & ("p2") & ("p3") ))) & (!( (X !"p0") & (X !"p1") &
(X "p2") & (X "p3") ) | ( ((!"p0") & (!"p1") & ("p2") & ("p3") ) |
((!"p0") & ("p1") & (!"p2") & (!"p3") ))) & (!( (X !"p0") & (X "p1") &
(X !"p2") & (X !"p3") ) | ( ((!"p0") & ("p1") & (!"p2") & (!"p3") ) |
((!"p0") & ("p1") & (!"p2") & ("p3") ))) & (!( (X !"p0") & (X "p1") &
(X !"p2") & (X "p3") ) | ( ((!"p0") & ("p1") & (!"p2") & ("p3") ) |
((!"p0") & ("p1") & ("p2") & (!"p3") ))) & (!( (X !"p0") & (X "p1") &
(X "p2") & (X !"p3") ) | ( ((!"p0") & ("p1") & ("p2") & (!"p3") ) |
((!"p0") & ("p1") & ("p2") & ("p3") ))) & (!( (X !"p0") & (X "p1") &
(X "p2") & (X "p3") ) | ( ((!"p0") & ("p1") & ("p2") & ("p3") ) |
(("p0") & (!"p1") & (!"p2") & (!"p3") ))) & (!( (X "p0") & (X !"p1") &
(X !"p2") & (X !"p3") ) | ( (("p0") & (!"p1") & (!"p2") & (!"p3") ) |
(("p0") & (!"p1") & (!"p2") & ("p3") ))) & (!( (X "p0") & (X !"p1") &
(X !"p2") & (X "p3") ) | ( (("p0") & (!"p1") & (!"p2") & ("p3") ) |
(("p0") & (!"p1") & ("p2") & (!"p3") ))) & (!( (X "p0") & (X !"p1") &
(X "p2") & (X !"p3") ) | ( (("p0") & (!"p1") & ("p2") & (!"p3") ) |
(("p0") & (!"p1") & ("p2") & ("p3") ))) & (!( (X "p0") & (X !"p1") &
(X "p2") & (X "p3") ) | ( (("p0") & (!"p1") & ("p2") & ("p3") ) |
(("p0") & ("p1") & (!"p2") & (!"p3") ))) & (!( (X "p0") & (X "p1") &
(X !"p2") & (X !"p3") ) | ( (("p0") & ("p1") & (!"p2") & (!"p3") ) |
(("p0") & ("p1") & (!"p2") & ("p3") ))) & (!( (X "p0") & (X "p1") &
(X !"p2") & (X "p3") ) | ( (("p0") & ("p1") & (!"p2") & ("p3") ) |
(("p0") & ("p1") & ("p2") & (!"p3") ))) & (!( (X "p0") & (X "p1") &
(X "p2") & (X !"p3") ) | ( (("p0") & ("p1") & ("p2") & (!"p3") ) |
(("p0") & ("p1") & ("p2") & ("p3") ))) & (!( (X "p0") & (X "p1") &
(X "p2") & (X "p3") ) | ( (("p0") & ("p1") & ("p2") & ("p3") ) |
((!"p0") & (!"p1") & (!"p2") & (!"p3") ))))) &
(F("robotturnwin" | "humanturnwin"))
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